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this above all: to thine own self be true,
and it must follow, as the night the day,
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Chapter 1: Introduction

This project consists of explorations into both software methods of implementation and
numerical methods in neutron and thermal radiation transport, in both production and
research codes. The central point of these endeavours has been to answer the call of the
ever-present need to go faster: faster and more accurate numerical methods, and faster
implementation of numerical methods into HPC-worthy code.

Here two published conference proceedings are presented that have made contributions
in both of these efforts. While directly relating to the applied field of nuclear engineering,
aspects of this work have ramifications for computations across all disciplines including
mechanical engineering and its sub-discipline of thermal-fluid sciences. This introduction
presents some background in these topics.

1.1 Neutron Transport

Neutron transport is required when modeling nuclear reactor physics as it describes where
and how neutrons produce fission reactions which in turn generate heat in the fuel rods [1].
Modeling this is necessary for both the analytical design and safety analysis of a reactor.
Assuming no neutrons are being produced by fission, the neutron transport equation
(NTE) takes the form of an intergro-partial differential Boltzmann-type equation with
seven independent variables:

1
v(E)

∂ψ(r, E, Ω̂, t)
∂t

+ Ω̂ · ∇ψ(r, E, Ω̂, t) + Σt(r, E, t)ψ(r, E, Ω̂, t) =∫
4π

∫ ∞

0
Σs(r, E′ → E, Ω̂′ → Ω̂, t)ψ(r, E, Ω̂, t)dE′dΩ̂′ + s(r, E, Ω̂, t) , (1.1)

where ψ is the angular flux, v is the velocity of the particles, Σt is the total material
cross section, Σs is the scattering cross section, r is the location of the particle in three-
dimensional space, Ω̂ is the direction of travel in three-dimensional space, s is the source
of new particles being produced, t is the time, and E is the energy of the particles for
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r ∈ V , Ω̂ ∈ 4π, 0 < E < ∞, and 0 < t. We also prescribe the initial condition

ψ(r, E, Ω̂, 0) = ψinitial(r, E, Ω̂) (1.2)

and the boundary condition

ψ(r, E, Ω̂, t) = ψbound(r, E, Ω̂, t) for r ∈ ∂V and Ω̂ · n < 0 . (1.3)

1.2 Thermal Radiation Transport

Thermal radiation transport shows how photons are emitted (via plankian emission),
scattered, and absorbed in a given system. This can be important for modeling radiative
heat transfer in a system when when the gray assumption the diffusive assumption or
non participating media assumption cannot be made. As emission of photons is governed
by the temperature of the material, two coupled equations can be written where one
describes the transport of particles trough space

1
c

∂I(r, E, Ω̂, t)
∂t

+ Ω̂ · ∇I(r, E, Ω̂, t) + σI(r, E, Ω̂, t) = σB(E, T ) + Qr(r, E, t)
4π (1.4)

and the other is an energy balance between the material and the emission of photons

cv(r, t)∂T (r, t)
∂t

=
∫ ∞

0

∫
4π

(I(r, E, Ω̂, t) −B(E, T ))dΩ′dE′ +Qm(r, t) (1.5)

where I is the specific intensity, B is Planck’s function for radiation, cv is the specific
heat of the material, T is the material temperature, Qr is the in-homogeneous photon
source, Qm is the in-homogeneous material energy source, c is the speed of light, and σ

is the absorption opacity for r ∈ V , Ω̂ ∈ 4π, 0 < E < ∞ and 0 < t [2]. We also prescribe
the initial conditions

I(r, E, Ω̂, 0) = Iinitial(r, E, Ω̂) (1.6)

T (r, 0) = Tinitial(r) (1.7)

and the boundary condition

I(r, E, Ω̂, t) = Ibound(r, E, Ω̂, t) for r ∈ ∂V and Ω̂ · n < 0 (1.8)
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1.3 Direct Simulation Monte Carlo Solution Method

Whereas deterministic numerical methods (e.g., forward Euler, Crank–Nicholson, Gaus-
sian Quadrature) are applied to the governing integro-partial differential equations them-
selves, direct simulation Monte Carlo (or just Monte Carlo) is used to simulate the actual
subatomic particles and how they interact with a given system [3]. Here known material
composition and interaction rates of the particles at all speeds can be leveraged with
pseudo-random numbers to individually simulate a particles life, aka history.

Take for example a shielding problem: where a beam of neutrons is impinging a slab
of purely absorbing material. Based off a cumulative probability distribution function
we can supply a pseudo-random number between zero and one and the total material
cross section (a known perimeter) to sample a distance to a collision. We then compare
the known width of the slab and the sampled distance to see if the particle made it
through or was absorbed within. If this process is repeated a sufficient number of times
a statistically prevalent solution can be produced.

As the simulation grows more complex (e.g. scattering events, fission events, track
length estimators, etc.) the computational work needed to simulate one neutron life time
will go up. Also as Monte Carlo methods converge at a rate of O = 1

log n a massive
number of particles may be required to gain a converged solution. All this is to say when
using the Monte Carlo method on modern compute architectures it is often imperative
to parallelize the algorithm.
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Chapter 2: Novel MC TRT Method: Vectorizable Variance Reduction
for Energy Spectra

2.1 Introduction

Several production-scale multigroup Thermal Radiation Transport (TRT) codes use the
Monte Carlo method as their primary solution technique. One such example is Jayenne
from Los Alamos National Lab, which samples a single energy group for a particle then
transports it [4]. In this work we created a novel TRT variance-reduction method to
better resolve the energy spectra with large group structures and fewer particles, with a
goal to decrease computational time at a given fidelity of solution in the energy spectra.

2.2 TRT Equations

The explicit TRT equations discretized in frequency using a multigroup approximation,
and in zero-dimensional space, are [5]

1
c

∂Ig(t)
∂t

+ σa,g(T )Ig(t) = xg(T )Bg(T ) (2.1)

cv
dE

dt
=

G∑
0
σg(T )Ig(t) = xg(T )Bg(T ) (2.2)

for time t > 0 and the number of groups G ≥ 1, where Ig(T ) is the specific intensity in a
given group g, c is the speed of light, σa,g(T ) is the absorption opacity in a given group
g, Bg(T ) is Planck’s function for group g, cv is the specific heat of the material (which is
assumed constant), and xg(T ) is the Planck-weighted opacity for group g.

Note that we discretize the material equation in time using a forward Euler scheme
[6]:

Tn+1 = Tn + ∆t
cvρ

dEn

dt
, (2.3)

where n is the time index and ρ is the material density. This means error is proportional
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to O(∆t).

2.3 Flocking Particles

We propose a method in which a single pseudo-particle carries a vector of energy weights,
representing particles across all energy groups in a given simulation. This could be
thought of as a “flock” of particles all moving together through space, angle, and time.
We implement continuous energy deposition so a distance to event is found by comparing
the distance to a spatial cell boundary and a distance associated with the time left in a
step (effectively the temporal cell boundary) and selecting the minimum between the two.
We are considering several ways to implement physical scattering, which is not currently
implemented in this work. A scheme with explicit Euler does not introduce “effective
scattering” and physical scattering is generally much smaller than absorption opacity.

We also required this method to be time dependant by using a particle census to
move particles between time steps. A known, desired number of particles is used to find
the census population (particles brought forward from the last time step) and emission
population (particles produced by material emission within a time step) governed by
their ratio of total energy. If the population of the census is larger than its allocation,
then we use Russian Roulette for population control (based on Legrady et al. [7]). This
addresses the unbounded particle growth that happens when implementing continuous
energy methods.

A Roulette normally does not conserve either total energy or total group energy for a
finite number of particles; our method requires both. This is due to our desire to conserve
spectral shape to hopefully lead to further variance reduction. This requirement means
that if the energy weight for a given group across all particles was computed, it would
be the same before and after the Roulette, as well as total energy of all particles. Figure
1 ?? shows the population Roulette, where a vector of energy weights is accumulated for
each Rouletted particle in each group. That accumulation vector is then divided by the
number of particles remaining at the end of the Roulette. And finally this per particle
accumulation vector of energy weights is added to the energy of the still living census
particles, group by group. Histories will only terminate when met with the end of the
problem or the Roulette.

After a distance to event is sampled, the energy weights in all groups must be
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Figure 2.1: Flowchart of the Russian Roulette population control process as implemented
in our method.

attenuated, requiring the computation of an exponential function, and the manipulation
of energy weights in all groups. This is done independently as if it were a normal particle
in that energy group by

wn+1
g = wn

g e
−σgd , (2.4)

where w is the energy weight of a particle, n is the time index, g is the group number,
and d is the distance to event (same distance across all groups).

Consider a 200-group problem using our novel technique: instead of computing a
single exponential attenuation as in the single-group MC scheme, we must repeat this
exponential calculation 200 times (once for each frequency group in the problem). Thus
for one pseudo-particle’s history, in one time step, the number of exponentials required
is now proportional to the number of groups, hindering effective performance gains.

However, there is still hope. The attenuation calculation involves applying the same
operation to multiple discrete pieces of data; said another way, the attenuation calculation
is an example of single instruction/multiple data (SIMD) processing. SIMD hardware (a
type of vector-processing unit) is widely deployed, and can be found in production x86
CPUs with AVX instructions as well as machines purpose-built to operate on vectors.
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It is also relatively easy to enable through the use of compiler flags on modern C++
compilers [8]. As a result, this method will be able to use accelerators that already
exist and commonly remain idle, to speed up our novel method and dampen the hit to
performance.

The method presented here is similar to, though distinct from, a method described
by McKinley, Brooks, and Szoke [9]. They apply a vector-of-weights approach to the
Symbolic Implicit Monte Carlo (SIMC) algorithm, while this method is applied directly
to a time-explicit discretization of the TRT equations. We also investigate this method
for specific use on vector hardware.

2.4 Results and Discussion

We developed a test code in C++ to examine this method’s performance, first as a
time-dependent zero spatial dimension problem, then as a time-dependent single spatial
dimension problem. For both we ran gray and multigroup test cases and compared results
to analytical solutions (if available) as well as the Jayenne Implicit Monte Carlo code
from Los Alamos National Lab.

2.4.1 Zero-dimensional problem

The zero-dimensional test is a simple time-dependent equilibration problem. We com-
pared a gray case to both the analytical Mosher [10] solution as well as solutions from
Jayenne. Then, we performed simulations with up to 200 energy groups in Jayenne,
examining both time to equilibration and the spectrum of the results.

Table 2.1 shows that to get roughly the same fidelity of solution our novel method
required the simulation of only 1 × 104 particles, while the production code required
1 × 106 particles. These were computed against a benchmark solution from the production
code of 5 × 106 particles. With these results we felt confident to move our novel method
into one dimension.
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Table 2.1: L2 norms between Jayenne and Flocking for the zero-dimensional solution.
Flocking at 1 × 104 particles is as accurate as Jayenne at 1 × 106.

Time Step Jayenne (104) Jayenne (106) Flocking (104)

1000 1.03 × 10−1 4.60 × 10−3 3.66 × 10−3

2000 7.59 × 10−2 4.53 × 10−3 3.83 × 10−3

2.4.2 One-dimensional problem

To compare the results of our testbed with those from Jayenne, we employ a Marshak
wave test, again starting from the gray case, then moving to multigroup with up to 200
groups. The test case is a 1 cm long slab of iron (cv = 0.1 GJ/(g keV), ρ = 1 g/cm3),
where the material and radiation temperatures are initially at equilibrium at 1 × 10−6 keV.
The left boundary is an infinite plane wall source, with temperature 3 keV and the right
boundary is a vacuum. We used a time step of ∆t = 10−12 s and a mesh width of ∆x =
0.005 cm As time goes forward we expect a temperature wave to propagate through the
material from left to right. As time goes to infinity we expect the solution to come to
equilibrium.

After confirming that the temperature profiles over time matched both our expecta-
tions and solutions from Jayenne, we moved to examine their spectra in specific mesh
cells at specific time steps. Figure 2.2 shows the spectrum produced by either code at
ten-thousand particles compared to a benchmark solution of the production code ran with
5 million particles. The spectral solution from Jayenne is very noisy (lots of jagged peaks)
while the spectrum produced by our novel method is smooth and accurate compared to
the benchmark solution at this low particle count. This demonstrates that the variance
reduction works.

However, a slight deviation of the spectral shape near the peak is observed. We
believe this stems from the use of spatial tilt for source position sampling in Jayenne
that has not yet been implemented in our test-bed code. When implemented we expect
this discrepancy to disappear and we will be able to use a traditional Figure of Merit
comparison to fully demonstrate the novel method’s variance reduction abilities.

We must also consider run times. Table 2.2 confirms that this method is vectorizable,
and will be able to take advantage of the specialized vector processing components of
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Figure 2.2: Energy spectra from a single cell at a single time step produced with 1 × 104

particles to show the high-variance solution produced from Jayenne, and the low-variance
solution produced by our novel method. They are plotted against a benchmark solution
from Jayenne computed with 5 × 106 particles.
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Table 2.2: Run-times of the 1D novel method test bed under various compiler flag
conditions. Simulations run on a single node of Intel Skylake Gold processors.

Optimized? Vectorized? Runtime [s]

no no 1855.2
yes no 353.2
yes yes 184.7

Table 2.3: Comparing the run-times of the 1D test case between Jayenne and flocking
test bed.

Method # particles Runtime [s]

Jayenne 1 × 104 70.97
Jayenne 1 × 106 3005.50
flocking 1 × 104 92.0
flocking 1 × 106 3775.12

modern CPUs. It also shows that enabling vectorization has a huge impact on run time
for this method; cutting runtime for a fully optimized executable (using the Intel icpc
compiler flag -Ofast) in half when they are turned on (using a SIMD reduction flag
above the attenuation loop).

To confirm that this method will result in an overall performance increase when
considering the energy spectra, we raced the production code against the novel method
at various particle counts and examined their spectra. Table 2.3 shows that the novel
method does take slightly longer. However, if a well resolved spectrum is the goal of the
computation then we have effectively reduced the computational time as fewer particles
are required to get a well defined solution. While direct comparisons to production codes
can be fraught, we feel this demonstrates that if this method is implemented in Jayenne
the figure of merit will increase.
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2.5 Conclusions

We have successfully demonstrated a novel variance reduction technique for the energy
spectra for Monte Carlo Thermal Radiation Transport. Continued work is required before
the method is stable enough to implement on production codes. Specifically we need
to implement physical scattering, source tilting [2], and post-collisions group splitting
(to prevent highly unlikely interactions across various energy regimes in optically thin
material) in the testbed.

2.6 Acknowledgments

Release number: LA-UR-22-20908.
This work was supported by the Center for Exascale Monte-Carlo Neutron Transport

(CEMeNT) a PSAAP-III project funded by the Department of Energy, grant number:
DE-NA003967.



13

Explorations of Python-Based Automatic Hardware Code Generation
for Neutron Transport Applications

J. P. Morgan, Todd S. Palmer, and Kyle E. Niemeyer
Oregon State University
Center for Exascale Monte Carlo Neutron Transport

Transactions of the American Nuclear Society
Vol. 126, 318-320, 2022.
https://doi.org/doi.org/10.13182/T126-38137

https://doi.org/doi.org/10.13182/T126-38137


14

Chapter 3: Explorations of Python-Based Automatic Hardware Code
Generation for Neutron Transport Applications

3.1 Introduction

Monte Carlo / Dynamic Code (MC/DC) is a soon-to-be released Python-based neutron
transport solver, developed as part of CEMeNT (Center for Exascale Monte Carlo Neutron
Transport). It is a research code used to investigate novel methods for the development
of dynamic simulations. As Monte Carlo (MC) neutron transport applications are often
highly computationally taxing, a Python-based technique to rapidly gain parallelism for
both GPU and CPU hardware is required so methods implemented in MC/DC can be
tested at the high performance computing (HPC) scale.

Our objective is to find a technique that presents the best software engineering so-
lution to enable rapid prototyping for methods research in MC/DC at the HPC scale
using both CPUs and GPUs. We are not looking to alter current development dynamics
for production HPC codes or suggest that these techniques will enable Python-based
development—or should be pursued—for all production codes. Instead, we seek to exam-
ine production techniques for rapidly developing novel methods at large scales with the
ability to take advantage of accelerator hardware.

We implemented core components of MC/DC in a testbed to allow for even faster
exploration of parallelism in a Python framework. This testbed, MC/DC-Toy Neutronics
Testbed (MC/DC-TNT), is a transient, event-based, mono-energetic solver that enables
straightforward parallelization of its compute functions. While the performance of large-
scale MC codes is generally memory-bound rather than compute-bound [11], our initial
efforts examine techniques related to the latter to gain a foothold in Python-based HPC.

3.2 Methods of Parallelization

We examine three methods of parallelization within a Python framework. All three
operate by using Python as “glue” language (a language which is used to run other
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compiled kernels) with a just-in-time (JIT) compilation scheme to produce and run
compute kernels. All three are also coupled with automatic code translation protocols,
to aid in the rapid development of these kernels, either with the source being written in
full Python or some Python-esq form.

3.2.1 PyKokkos

PyKokkos [12] is a Python library implementation for the C++ Kokkos HPC portability
model developed by Sandia National Laboratories [13]. PyKokkos is under active devel-
opment and does not implement all the functionality of Kokkos, nor is it as mature as
some of the other methods presented here. PyKokkos currently only implements CUDA
and OpenMP back-ends.

More than any other method we consider, PyKokkos has the ability to abstract away
the production of compute kernels from their target hardware. It even has the ability to
abstract data structures from the user, appearing almost as type-annotated NumPy [14]
arrays. While the programming model is entirely Python-based (the user only programs
in Python) it can be non-intuitive, as it is based on a paradigm specifically designed for
abstraction.

3.2.2 Numba + CUDA

Numba [15] is a translator and compiler for Python that implements the LLVM high
performance compiler library, and promises “C-like speeds” for functions that implement
it. In simple cases, nothing more than a compiler flag is required to produce a C kernel for
a given function that is automatically bound and run by Python. This can even apply to
simple functions to be parallelized on a CPU, where parallelization can be implemented
with one flag option above a function. However, when functions become more complex,
the use of more Numba commands in the Python code is required. It directly supports
Nvidia GPUs and seems to be the method of choice for interfacing with the CUDA API
from Python.

Recently a sub-module to Numba has been developed called pyomp [16] that seeks
to allow Numba kernels to take advantage of the OpenMP API for CPU threading. We
explore this sub-module and Numba’s native “threading” techniques separately from one
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another as they require slightly different implementations.
While Numba does have some abstractions for specific GPU operations, most of these

cannot be leveraged to offload the computational burden in our simulations. In our use
case the user will effectively have to write CUDA C kernels within Python. Thus, the user
will have to be aware of the hardware architecture, hampering rapid prototyping. Also,
Oden found that Numba does include a significant computational overhead, reaching 50–
85% of the performance of pure CUDA C versions of compute-intensive benchmarks [17].
In spite of this, we include it in this comparison due to its increasing popularity, ease of
use for CPU implementations, and industry support.

3.2.3 Mako Templating Engine

This method has been implemented by the PyFR computational fluid dynamics solver [18]
and uses the Mako template engine [19] to abstract and simplify the scripting of compute
kernels.

At run time, this approach pushes static kernel templates through the template engine
to reform the kernel into a requisite secondary language for a given hardware API. Then,
code is compiled to machine code and bound to Python using a hardware code-generating
library.

This type of abstraction, while somewhat convoluted, has enabled PyFR to reach
the petascale while being able to run on CPUs and AMD/Nivdia/Intel GPUs [20]. The
developers of PyFR have reported less than 1% of computational overhead due to the
Python interpreter in this method [21].

We are confident this method will work in parallelizing MC/DC-TNT at HPC scale;
however, the initial development needed appears to be significant. While the use of
templates does simplify the scripting of compute kernels, architecture-specific knowledge
is still required, again, hampering rapid prototyping.

3.3 Preliminary Findings

Work is ongoing to implement all methods. Currently Numba (threading and PyOmp)
and Pykokkos (OpenMP) are implemented on MC/DC-TNT. Table 3.1 shows run time
data for the Advance kernel (the most compute-intensive function, which implements
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a surface tracking algorithm), as well as a full integration test for a homogeneous slab
problem with vacuum bounds on either side (L=1 cm, ∆x = 0.01 cm, Σa = Σf = Σs =
0.333 1/cm, ).

All techniques demonstrate the viability of these parallelization methods with a
significant decreases in run time between pure Python and any parallelization technique.
As some kernels must be implemented in serial, an integration test for a slab problem
shows all of the methods’ parallelization abilities as well as the serial speed benefits of
JITed code when compared to a pure Python implementation. PyKokkos does seem to
be more performant than both Numba implementations, with Numba PyOmp being less
performant than Numba threading. PyOmp has not yet been incorporated into the main
distribution of Numba and as such does not receive the continual updates that Numba
threading does. We expect that, when it is, we will see this gap between performance of
the two implementations narrow.

JIT compilation methods require an initial compilation step when they are being
run for the first time on a given system with a given code (any alteration to kernel
source code will require this to be redone). Often these compiled binaries are cached
in order to prevent this extra runtime hit when ran subsequently. However, depending
on problem size, the compilation time can be a significant percentage of overall runtime
and should be considered. Table 3.2 shows overall compilation time when “warming up
kernels” (making an initial call with dummy values) before the simulation starts, per
method and hardware target. PyKokkos OpenMP takes 7 times longer than the Numba
implementations to translate and compile the kernels though all methods finish a matter
of seconds.

We also consider the difficulty of these implementations when coming from a pure
Python code. The Numba CPU implementation was easy for simpler kernels, functioning
as advertised with a single compiler flag. More complex kernels, especially ones designed
to be run in parallel, had to be reformed and use in kernel numba commands to work.
Also, we found that when Numba wasn’t able to produce kernels for any reason it’s error
messages directing us to the issues where either cryptic or nonexistent. We found working
within Pykokkos to be more difficult than Numba for the CPU implementation. Fueled
again by cryptic runtime errors, frustrating type casting issues, and a lack of documen-
tation both for the build process as well as module commands. We expect as PyKokkos
matures these issues will be alleviated. It should also be stated the allure of PyKokkos
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Table 3.1: Run time of Advance kernel and integration test in seconds, using 1 × 108

particles and 16 threads (if method is parallelized); kernel compilation time not included.

Method Advance Integration

Pure Python (CPU) 5.140 × 104 5.297 × 104

Numba (Threading) 1.887 × 102 2.323 × 102

Numba (PyOmp) 2.876 × 102 3.825 × 102

PyKokkos (OpenMP) 1.480 × 102 1.548 × 102

Table 3.2: First run translation and compilation wall-clock times for all kernels, in
seconds.

Method Compilation time

Numba (Threading) 4.99
Numba (PyOmp) 5.66
PyKokkos (OpenMP) 37.50
PyKokkos (CUDA) 39.72

is not only a slight increase of performance on CPU implementations when compared to
Numba but also in its portability, with promises of CUDA GPU implementations with
changing a single variable. Early implementations of PyKokkos CUDA on MC/DC-TNT
does seem to confirm this.

3.4 Future Work

Significant work remains before we can select a method to implement in MC/DC. Our
immediate goals are to complete the PyKokkos CUDA and Numba CUDA implemen-
tations before finally moving onto the Mako templating engine method. We will also
implement the AZURV1 [22] transient benchmark to further validate MC/DC-TNT as
well as examine performance under different nuclear material data regimes.
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We are not now that strength which in old days
Moved earth and heaven, that which we are, we are,

One equal temper of heroic hearts,
Made weak by time and fate, but strong in will

To strive, to seek, to find, and not to yield.

Tennyson
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